23,185 research outputs found

    Chiral Boson Theory on the Light-Front

    Get PDF
    The {\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.Comment: 9 pages, plain Late

    Perspectives of Light-Front Quantized Field Theory: Some New Results

    Full text link
    Some basic topics in the light-front (LF) quantization of relativistic field theory are reviewed. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the micro- causality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent. In the context of the Dyson-Wick pertur- bation theory the relevant popagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes xpm=0x^{pm}=0 constitute characteristic surfaces of the hyper- bolic partial differential equation is found irrelevant in the quantized theory.Comment: 50 pages, plain Latex, Invited article for "Saga of Field Theory: From Points to Strings", Eds., A.N. Mitra et al., Indian National Science Academy-INSA, Indi

    Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape

    Full text link
    Here, cosmology of the late and future universe is obtained from f(R)f(R)-gravity with non-linear curvature terms R2R^2 and R3R^3 (RR being the Ricci scalar curvature). It is different from f(R)f(R)-dark enrgy models, where non-linear curvature terms are taken as gravitational alternative of dark energy. In the present model, neither linear nor no-linear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms in the Friedmann equation derived from f(R)f(R)-gravitational equations. It has advantage over f(R)f(R)- dark energy models in the sense that the present model satisfies WMAP results and expands as ∼t2/3\sim t^{2/3} during matter-dominance. So, it does not have problems due to which f(R)f(R)-dark energy models are criticized. Curvature-induced dark energy, obtained here, mimics phantom. Different phases of this model, including acceleration and deceleration during phantom phase, are investigated here.It is found that expansion of the universe will stop at the age (3.87t0+694.4kyr)(3.87 t_0 + 694.4 {\rm kyr}) (t0t_0 being the present age of the universe) and after this epoch, it will contract and collapse by the time (336.87t0+694.4kyr)(336.87 t_0 + 694.4 {\rm kyr}). Further,it is shown that universe will escape predicted collapse (obtained using classical mechanics) on making quantum gravity corrections relevant near collapse time due to extremely high energy density and large curvature analogous to the state of very early universe. Interestingly, cosmological constant is also induced here, which is very small in classical domain, but very high in quantum domain.Comment: 33 page
    • …
    corecore